Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Mol Inform ; 41(2): e2100178, 2022 02.
Article in English | MEDLINE | ID: covidwho-1460240

ABSTRACT

Recent fragment-based drug design efforts have generated huge amounts of information on water and small molecule fragment binding sites on SARS-CoV-2 Mpro and preference of the sites for various types of chemical moieties. However, this information has not been effectively utilized to develop automated tools for in silico drug discovery which are routinely used for screening large compound libraries. Utilization of this information in the development of pharmacophore models can help in bridging this gap. In this study, information on water and small molecule fragments bound to Mpro has been utilized to develop a novel Water Pharmacophore (Waterphore) model. The Waterphore model can also implicitly represent the conformational flexibilities of binding pockets in terms of pharmacophore features. The Waterphore model derived from 173 apo- or small molecule fragment-bound structures of Mpro has been validated by using a dataset of 68 known bioactive inhibitors and 78 crystal structure bound inhibitors of SARS-CoV-2 Mpro . It is encouraging to note that, even though no inhibitor data has been used in developing the Waterphore model, it could successfully identify the known inhibitors from a library of decoys with a ROC-AUC of 0.81 and active hit rate (AHR) of 70 %. The Waterphore model is also general enough for potential applications for other drug targets.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors , SARS-CoV-2/drug effects , COVID-19 , Humans , Molecular Docking Simulation , Protease Inhibitors/chemistry , Water
2.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: covidwho-1387713

ABSTRACT

Small molecule modulators of protein-protein interactions (PPIs) are being pursued as novel anticancer, antiviral and antimicrobial drug candidates. We have utilized a large data set of experimentally validated PPI modulators and developed machine learning classifiers for prediction of new small molecule modulators of PPI. Our analysis reveals that using random forest (RF) classifier, general PPI Modulators independent of PPI family can be predicted with ROC-AUC higher than 0.9, when training and test sets are generated by random split. The performance of the classifier on data sets very different from those used in training has also been estimated by using different state of the art protocols for removing various types of bias in division of data into training and test sets. The family-specific PPIM predictors developed in this work for 11 clinically important PPI families also have prediction accuracies of above 90% in majority of the cases. All these ML-based predictors have been implemented in a freely available software named SMMPPI for prediction of small molecule modulators for clinically relevant PPIs like RBD:hACE2, Bromodomain_Histone, BCL2-Like_BAX/BAK, LEDGF_IN, LFA_ICAM, MDM2-Like_P53, RAS_SOS1, XIAP_Smac, WDR5_MLL1, KEAP1_NRF2 and CD4_gp120. We have identified novel chemical scaffolds as inhibitors for RBD_hACE PPI involved in host cell entry of SARS-CoV-2. Docking studies for some of the compounds reveal that they can inhibit RBD_hACE2 interaction by high affinity binding to interaction hotspots on RBD. Some of these new scaffolds have also been found in SARS-CoV-2 viral growth inhibitors reported recently; however, it is not known if these molecules inhibit the entry phase.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Machine Learning , Protein Interaction Maps , Proteins/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL